翻訳と辞書
Words near each other
・ Conley–Zehnder theorem
・ Conlie
・ Conlig
・ Conlig railway station
・ Conlin
・ Conlin McCabe
・ Conlin's Furniture
・ Conjugate diameters
・ Conjugate element (field theory)
・ Conjugate eye movement
・ Conjugate focal plane
・ Conjugate Fourier series
・ Conjugate gaze palsy
・ Conjugate gradient method
・ Conjugate index
Conjugate points
・ Conjugate prior
・ Conjugate residual method
・ Conjugate transpose
・ Conjugate vaccine
・ Conjugate variables
・ Conjugate variables (thermodynamics)
・ Conjugate-permutable subgroup
・ Conjugated estrogen
・ Conjugated fatty acid
・ Conjugated linoleic acid
・ Conjugated microporous polymer
・ Conjugated protein
・ Conjugated system
・ Conjugation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Conjugate points : ウィキペディア英語版
Conjugate points

In differential geometry, conjugate points are, roughly, points that can almost be joined by a 1-parameter family of geodesics. For example, on a sphere, the north-pole and south-pole are connected by any meridian.
==Definition==
Suppose ''p'' and ''q'' are points on a Riemannian manifold, and \gamma is a geodesic that connects ''p'' and ''q''. Then ''p'' and ''q'' are conjugate points along \gamma if there exists a non-zero Jacobi field along \gamma that vanishes at ''p'' and ''q''.
Recall that any Jacobi field can be written as the derivative of a geodesic variation (see the article on Jacobi fields). Therefore, if ''p'' and ''q'' are conjugate along \gamma, one can construct a family of geodesics that start at ''p'' and ''almost'' end at ''q''. In particular,
if \gamma_s(t) is the family of geodesics whose derivative in ''s'' at s=0 generates the Jacobi field ''J'', then the end point
of the variation, namely \gamma_s(1), is the point ''q'' only up to first order in ''s''. Therefore, if two points are conjugate, it is not necessary that there exist two distinct geodesics joining them.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Conjugate points」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.